光引发 F₂/H₂ 链反应激光的 时间分辨光谱研究

陈锡荣 葛树杰 卫禹洲 张存浩 (中国科学院大连化学物理研究所)

提 要

首次定量地研究了氧对 F_2/H_2 链反应化学激光谱线输出数目、单谱线出现时间和谱线强度的 影响。 各振动能级的单谱线出现次序均呈现正 J 移规律。 $v=1 \cong v=6$ 的转动能级都存在非平衡分布。 实验测 定到 $P_6(4) \rightarrow P_1(9)$ 和 $P_6(6) \rightarrow P_1(11)$ 激光的级联跃迁。

模型计算结果与实验结果相当符合。

一、引 言

光引发 F_2/H_2 链反应脉冲化学激光时间分辨光谱的实验结果与理论模型 计 算 之间 有 较大差异。例如 S. N. Suchand et al⁽¹¹⁾ 测得 $P_1(3) \cong P_4(3)$ 的激光谱线仅有 24 条,而理论 模型计算预言谱线为 47 条⁽⁴⁾。V. P. Borisov 等⁽²⁾测得 $P_1(6) \cong P_5(7)$ 激光谱线为 27 条, Suchard⁽³⁾采用高 Q 值光腔使输出谱线增加到 40 条,而转动非平衡的理论模型计算所预言 的谱线输出却多达 60 条⁽⁵⁾。此外,理论模型计算预言的激光谱线的正 J 移规律,也与实验 结果有很大差异⁽⁵¹)。

另一方面,我们在实验中发现,激光输出谱线特性与 F₂/H₂ 混合物中的 O₂ 含量有很大 关系。 而作为 F₂/H₂ 混合物预反应阻抑 剂的 O₂ 量多少,与 F₂/H₂ 预混 物中产生基态 HF(*v*=0)的多少有直接关联^[6],因而显著地影响着激光输出光谱。这可能是前人实验结果 与理论模型计算常常不一致的一个重要原因。

但是,迄今未见有关 O_2 含量(也即 F_2/H_2 预反应生成的HF(0)含量)对激光输出光谱的研究结果发表。本文采用时间分辨光谱实验和理论模型计算,首次对此进行较系统的研究。

二、实验装置和理论模型

实验装置

实验装置如图1所示。激光输出由 HRD-2型双单色仪(f=0.5m,分辨率为±1cm⁻¹) 测定其波长,信号由低温(77K)碲镉汞红外探测器接收,用 300 MHz 的记忆示波器显示并 照相。测试系统的响应时间约为 0.1 µs。

收稿日期: 1983年4月8日; 收到修改稿日期: 1983年8月3日

图 1 实验装置示意图 Fig. 1 Schematic diagram of experiment

2. 理论模型

光引发脉冲化学激光的理论模型见文献[7]。 模型考虑了 HF(v, J)分子的 前 7 个 振 动能级, 14 个转动能级(假定它是 Boltzmann 分布)共 84 条 P 支振转跃迁的时 间 分 辨 特 性,并有监视 R 支跃迁的功能。采用 Gear 自动数值积分法,编制 Fortran 程序,在 NORD-100 计算机上进行演算。

三、结果与讨论

1. 级联效应与转动非平衡分布

图 2 是光引发 F_2/H_2 链反应激光 $P_1(J) \sim P_6(J)$ 的时间分辨光谱图。水平线表示 P 支

跃迁的持续时间,线上圆点表示峰功率出现时间。 垂直 箭头表示上能级向下能级的跃迁。 从图 2 可以看到,在 光引发 F_2/H_2 链反应脉冲激光过程中,出现两组级联跃 迁: $P_6(4) \rightarrow P_1(9)$ 和 $P_6(6) \rightarrow P_1(11)$ 。从图 2 还可看 到,同一振动带内有几个相邻跃迁同时发射较强的受激 辐射。 $v=1 \cong v=6$ 振动带都有这种现象。 这说明在光 引发脉冲 F_2/H_2 链反应体系中,存在着转动能级的非平 衡分布。

虽然转动平衡分布模型在描述激光输出能量、功率、 组份影响、谱线数目和相对强度以及时间分辨光谱等方 面与转动非平衡分布模型的计算结果基本一致^[4,5],但 后者可更逼真地描述上述的几个跃迁同时激射的实验现 象。我们的理论模型不具备这种功能,故不能与这类实 验现象作比较。但我们考虑了 HF(v)转动量子 态粒子 浓度热分布随时间的变化^[7],故可用作描述激光的时间

分辨光谱和J移现象,并与本文实验结果作比较。

2. 时间分辨光谱

Kerber 等^[4]的理论模型计算表明, F₂/H₂ 链反应脉冲激光的时间分辨光谱随着时间而

推移,一个振动带内各谱线出现次序,具有正的 J 移规 律。但 Suchard 等^{[1,33}测得的实验结果与该模型 计 算 有 很大差异;激光单线出现的次序,按转动量子数 J 来说, 很不规则。 Kerber^{[53}认为,这种不规则性是光引发激光 器的一个特征。

图 3 是我们实验测得的 HF 激光输出多谱线总合激 光波形,表1 列出测得的 41 条激光谱线的各参数值。

图 4 是 $P_{\mathfrak{s}}(J)$ 各支谱线的时间分辨光谱($\mathbf{F}_{\mathfrak{s}}$: $\mathbf{H}_{\mathfrak{s}}$: $\mathbf{H}_{\mathfrak{s}}$: $\mathbf{H}_{\mathfrak{s}}$: $\mathbf{O}_{\mathfrak{s}}$ =1:0.8:3.5:0.1, P=132 Torr)。从图 4 看到, $\mathbf{F}_{\mathfrak{s}}/\mathbf{H}_{\mathfrak{s}}$ 链反应被引发后, $P_{\mathfrak{s}}(J)$ 激光的最高增益跃迁随时间依 次向高转动能级(高 J 值)移动,即 $P_{\mathfrak{s}}(J)$ 激光谱线的次 序呈现正的 J 移规律。从图 2 可以看出,其它 $P_{\mathfrak{v}}(J)$ 跃

迁也有相似规律。这与 Kerber 模型计算所预言的结果相符。图 5 为实验结果与我们的理论模型计算相比较,很显然它们是相符合的。

 $\begin{array}{ll} ({\rm F_2:H_2:He:O_2=1:0.8:3.5:0.1}, & P=\\ 120 \mbox{ Torr, Xe flash lamp: } 26 \mbox{ kV}/2.1 \mbox{ } \mu {\rm F},\\ & t_0 \mbox{ (FWHM)=5 } \mbox{ } \mu {\rm s}) \end{array}$

图 5 $P_2(J)$ 时间分辨光谱实验与计算结果比较 Fig. 5 Comparison of the modeling with the experiments for $P_2(J)$ time resolved spectra (F_2 : H_2 :He:O_2:HF(0) \approx 1:1.2:1.5:0.1:0.1, P=150 Torr)

J 值向高转动能级推移的原因,可能是 F₂/H₂ 链反应放热而使系统温度升高的缘故。 我们的模型计算表明,在激光作用后期,介质温度可达 1000°C 以上,因此使最高增益跃迁向 高 J 值移动。但与 Kerber 观点不同,我们认为这种正 J 移现象才是 F₂/H₂ 链反应化学激 光器的一个特征,而 Suchard 所得到的不规则 J 移结果,可能是他们的实验还存在一些问 题所致。

3. 氧对激光输出谱线数目的影响

在 $F_2/H_2/He$ 混合物组分一定的条件下,预反应生成的 HF(0),主要受混合物中附加 的 O_4 量来控制, O_2 含量与 HF(0)生成的定量关系(示于图 7 的横坐标)。 因此, O_2 不仅通

	Table 1 Thile resolved spectroscopy of pulsed HTF chemical laser							
激光跃迁 谱 线		波长 (cm-1)		激光起始	峰值时间	全、宽	终止时间	备 注
能级(v)	$P_v(J)$	实测	计算	时间(µs)	(µs)	(µ8)	(µ\$)	
1→0	$P_{1}(6)$	3693.5	3693.54	2.2	2.7	1.0	3.2	$F_2:H_2:H_0:O_2$ 1:1.3:1.6:0.3
	$P_{1}(7)$	3644.3	3644.26	2,2	2.6	3.1	5.3	1:1.3:1.6:0.3
	P ₁ (8)	3593.8	3593.81	3 .8	4.8	2.5	6.3	1:1.3:1.6:0.3
	P ₁ (9)	3542.3	3542.25	4.2	4.4	2.1	6.3	1:1.3:1.6:0.3
	$P_1(10)$	3489.6	3489.64	6.1	6.3	2.1	8.2	1:0.8:3.5:0.2
	$P_1(11)$	3436.0	3436.04	6.8	7.0	1.3	8.1	1:0.8:3.5:0.2
	$P_1(12)$	3381.5	3381.50	7.2	7.3	1.0	8.2	1:0.8:3.5:0.2
	$P_2(3)$	3666.4	3666.40	1.0	1.1	1.1	2.1	1:1.2:1.5:0.1
	$P_{2}(4)$	3622.6	3622.62	1.1	2.0	1.8	2.9	1:1.2:1.5:0.1
	$P_{2}(5)$	3577.5	3577.54	1.1	2.2	2.9	4.0	1:1.2:1.5:0.1
	P ₂ (6)	3531.2	3531.21	2.0	3.3	3.5	5.5	1:1.2:1.5:0.1
	P ₂ (7)	3483.7	3483.69	3.0	5.2	4.0	7.0	1:1.2:1.5:0.1
	P ₂ (8)	3435.0	3435.04	4.0	4.8	3.5	7.5	1:1.2:1.5:0.1
$2 \rightarrow 1$	P ₂ (9)	3385.3	3385,30	5.3	6.4	2.5	7.8	1:1.2:1.5:0.1
	$P_2(10)$	3334.5	3334.53	5.5	6. 0	1.6	7.1	1:1.2:1.5:0.1
	$P_2(11)$	3282.8	3282.80	5.9	6.3	1.4	7.3	1:1.2:1.5:0.1
	$P_2(12)$	3230.1	3230.15	6.7	6.9	1.6	8.3	1:1.2:1.5:0.1
	$P_2(13)$	3176.6	3176.63	7.1	7.4	1.5	8.6	1:1.2:1.5:0.1
	$P_2(14)$	3122.3	3122.32	7.7	7.8	1.6	9.2	1:0.7:3.1:0.06
	P ₃ (3)	3503.6	350 3 .60	3.0	3.3	1.1	4.1	1:1.1:4.3:0.4
	P ₃ (4)	3461.4	3461.43	1.2	1.9	1.3	2.5	1:1.1:1.4:0.1
	P ₂ (5)	3418.0	3417.99	1.8	2.7	2.7	4.5	1:1.1:1.4:0.1
3-→2	$P_{3}(6)$	3373.3	8373.34	1.8	3.5	4.0	5.8	1;1.1:1.4:0.1
	P ₃ (7)	3327.5	3327.51	3.8	5.0	3.6	7.4	1:1.1:1.4:0.1
	P ₃ (8)	3280.6	3280.58	5.5	6.7	2.3	7.8	1;1.1;1.4;0,1
	P ₃ (9)	3232.6	3232,59	6.1	6.5	2.0	8.1	1:1.1:1.4:0.1
<u> </u>	$P_2(10)$	3183.6	3183.59	6.2	6.4	1.6	7.8	1:0.7:3.1:0.06
3-→2	P ₃ (11)	3133.6	3133.65	6.4	6.6	0.4	6.8	弱线

表 1 脉冲 HF 化学激光输出的时间分辨光谱

Table 1 Time resolved spectroscopy of pulsed HF chemical laser

激光跃迁谱线		波 长 (cm ⁻¹)		激光起始	峰值时间	全 宽	终止时间	·····································
能级(v)	$P_v(J)$	实测	计算	时间(µs)	(µs)	(µs)	(<i>u</i> s)	由 仁
4→3	P ₄ (5)	3262.5	3262.46	2.6	4.5	4.2	6.8	$F_2:H_2:He:O_2$ 1:1.3:1.6:0.1
	P ₄ (6)	3219.4	3219.41	3.0	5.6	4.7	7.7	1:1.3:1.6:0.1
	P ₄ (7)	3176.0	3175.23	5.8	6.8	2.1	7.9	1:1.3:1.6:0.1
	P4(8)	3130.0	3129.95	6.0	6.3	1.8	7.8	1:1.3:1.6:0.1
	P ₄ (9)	3083.6	3083.64	6.8	7.5	1.4	8.2	1:0.9:3.7:0.4
5 →4	P5(4)	3150.7	3150,70	2,4	3.6	1.8	5.2	1:0.9:3.7:0.4
	$P_{5}(5)$	3110.4	3110.37	2.8	4.8	4.2	7.0	1:0.9:3.7:0.4
	$P_{5}(6)$	3068.9	3068.88	3.2	4.2	4.4	7.6	1:0.9:3.7:0.4
	P ₅ (7)	3026.3	3026.27	5.2	6.5	2.6	7.8	1:0.9:3.7:0.4
	$P_{5}(8)$	2982.6	2982.59	5.6	6.0	1.6	7.2	1:0.7:3.1:0.06
6→5	$P_{6}(4)$	2999.9	2999.93	3.3	5.0	3.1	6.4	1:0.9:3.8:0.4
	$P_{6}(5)$	2961.1	2961.09	4.0	5.2	3.0	7.0	1:0.9:3.8:0.4
	$P_{6}(6)$	2921.1	2921.10	4.3	5.6	2.7	7.0	1:0.9:3.8:0.4

注: 单色仪分辨率 ±1 cm⁻¹。反应混合物组成 H₂/F₂=0.7~1.3, He/F₂=1.4~4.3, O₂/F₂=0.06~0.4, P= 120~140 Torr, 预混温度 77 K, 氙灯能量 26 kV/2.1 μF, 半宽 t₀=5 μs₀

过阻抑泵浦激光的 F_2/H_2 链反应,而且是通过控制预混物中的 HF(0)含量来影响 HF 化学激光性能的。我们在实验中观察到, F_2/H_2 混合物中的 O_2 含量对激光输出谱线数目有强烈的影响。理论模型计算表明,虽然 O_2 量对激光输出能量有显著影响^[7],但 O_2 本身对激光输出谱线数目的影响并不显著,而预反应生成的基态 HF(0)对它的影响却很大。我们将 O_2 含量及对应的 HF(0)生成量对激光输出谱带作图,如图 6 和图 7 所示。

从图 6 看到,随着 O_2 含量的增加(即 HF(0)量的减少),激光输出谱线的数目逐渐增加 到 41 条。由图 7 看到,当预反应生成的 HF(0)数量被控制在 5% 以下时,则 $P_1(J) \sim P_6(J)$

图 7 O_2 和 HF(0) 量对 $P_o(J=5)$ 激光谱带数目的影响 Fig. 7 Effect of O_2 and HF(0) on the number of

 $P_v(J=5)$ lasing lines (F₂:H₂:He:O₂=1:1.2:1.5:O₂, P=140Torr)

(续表)

振转跃迁均可出现。

可以认为, 文献[1]与[2]测得的数目不同以及它们远低于理论模型计算预言的谱线数 目, 其原因可能是 HF(0) 量不同所致。在实验中, 很难完全避免 HF(0) 的生成, 而在文献 [4, 5] 模型计算中,则未考虑 HF(0) 的影响。因此,它所预言的谱线自然要多。

当我们的模型计算中考虑了 HF(0)的影响时,理论计算与实验结果就比较接近(图 7)。 4. 氧对 $P_v(J)$ 激射起始时间的影响

在 F_2/H_2 混合物中添加 O_2 , 虽然可抑制 HF(0) 的生成, 使 HF(0) 对 HF(v) 的脱活作 用减弱,从而增加了激光输出的谱线数目。 但是,由于 O_2 也会与 H 或 F 发生 O_2+H+M \longrightarrow HO₂+M和O₂+F+M \longrightarrow FO₂+M反应, 从而消耗日和F原子而阻滞激光泵浦反 应的进行。图 8、图 9 和表 2 是 O_2 量对 $P_v(J)$ 激射的起振时间的影响。

时间(1 µs/div) 图 8 O_2 浓度对 $P_3(6)$ 激射时间和强度的影响

intensity of $P_3(6)$ lasing lines

(F₂:H₂:He:O₂=1:0.9:3.8:O₂, P=124Torr)

图 9 O2 浓度对 P5(6) 激射时间和强度的影响 Fig. 8 Effect of O_2 on the beginning time and Fig. 9 Effect of O_2 on the beginning time and intensity of $P_5(6)$ lasing lines (F₂:H₂:He:O₂=1:0.8:3.6:O₂, P=128 Torr)

$P_{\psi}(J)$	10	20	30	40	50
P ₂ (6)	2.5	2.8	2,5	2.4	-
P ₃ (6)	2.5	2,8	3.5	4.2	4.7
P ₅ (6)	2.5	3.3	4.5	5.3	5.9

	表 2 O_2 对 $P_o(J)$ 激射起始时间的影响	
Table 2	Effect of O_2 on the beginning time of $P_{-}(J)$ lasin	ıg

从表 2、图 8 和图 9 看到, 随着 O_2 量的增加, $P_3(6)$ 和 $P_5(6)$ 激光谱线的起始时间逐渐 推迟,而且高振动能级的跃迁受其影响更为显著。例如 $P_{\mathfrak{s}}(6)$ 跃迁,其激射起始时间由 $2.5 \mu s$ 推迟至 5.9 μs_{\circ} $P_{3}(6)$ 只是从 2.5 μs 推迟至 4.7 μs_{\circ} 而 $P_{2}(6)$ 跃迁,基本上不受影 响。 这可能是因为 $P_2(J)$ 激射主要是由 $F + H_2 \longrightarrow HF(v) + H$ 泵浦反应所贡献, 而 F + $O_3+M \longrightarrow FO_2+M$ 反应速率较 F+H2 \longrightarrow HF(v=2)+H反应速率慢得多,故 P₂(6)激 射起始时间未受 O2 量影响。

4 卷

5. 氧量对谱线相对强度的影响

我们的模型计算表明^[7],当 $O_2/F_2 > 20\%$ 时,激光输出比能量随 O_2 量增加几乎呈直线 下降。当 $O_2/F_2 = 40\%$ 时,激光输出比能量下降到只有原来 的五分之一左右。

从图 10 的实验结果看到, 当 $O_2/F_2>25\%$ 时, 较高振动能级的激光能量随 O_2 量增加几乎成直线下降。而当 $O_2/F_2>$ 30% 时, 可导致 $P_5(8)$ 谱线的激光输出消失。说明较高振动能级的激光谱线受 O_2 影响, 从而使激光输出能量降低的。

四、结 论

首次进行了 O₃ 对 F₂/H₂ 链反应化学激光谱线输出 影响 的定量研究。模型计算和实验结果表明, O₂ 量对激光谱线数 目、各谱线的初始出现时间以及谱线强度都有显著影响。

实验测定到 $P_1(J) \sim P_6(J)$ 的 41 条激 光 谱 线。时 间分 辨光谱研究表明,各振动能级的单谱线出现次序均呈现 正 J

移规律,与理论模型计算结果相当符合。这就纠正了 Kerber⁵³根据 Suchard 实验而认为不规则 J 移是该激光体系特征的观点。

实验结果表明, $P_6(4) \rightarrow P_1(9)$ 和 $P_6(6) \rightarrow P_1(11)$ 呈现激光的级联跃迁。在激光过程中, $v=1 \subseteq v=6$ 各振动能级的转动能级均存在非平衡分布。

致谢: 在理论模型计算工作中,得到了中国科学院沈阳计算研究所李木、李中渊同志大 力协作,在此谨致谢意。

参加本实验工作的还有范传源同志。

参考文献

- [1] S. N. Suchard, R. W. F. Gross et al.; Appl. Phys. Lett., 1971, 19, No. 10 (Aug), 411.
- [2] V. P. Borisov et al.; Soviet J. Q. E., 1977, 7, No. 2 (Feb), 187.
- [3] S. N. Suchard; Appl. Phys. Lett., 1973, 23, No. 2 (15 Jan), 68.
- [4] R. L. Kerber, G. Emanuel et al.; Appl. Opt., 1972, 11, No. 5 (1 Mar), 112.
- [5] R. L. Kerber, J. J. T. Hough; Appl. Opt., 1978, 17, No. 15 (1 Aug), 1369.
- [6] 陈锡荣,王忠诚等; 《中国激光》, 1983, 10, No. 3 (Mar), 129.

图 10 O_2 含量对 $P_v(J)$ 谱线 相对强度的影响 Fig. 10 Effect of O_2 on the relative intensity of $P_v(J)$ lasing lines (F_2 : H_2 : $He:O_2=1:0.8:3.7:O_2$, P=128 Torr)

Time-resolved spectroscopic studies of photo-initiated F_2/H_2 chain reaction chemical lasers

CHEN XIRONG GE SHUJIE WEI YUZHOU AND ZHANG CUNHAO (Dalian Institute of Chemical Physics, Academia Sinica)

(Received 8 April 1983; revised 3 August 1983)

Abstract

The effect of O_2 on the number and IR intensity of lasing lines has been quantitatively studied for a pulsed F_2/H_2 laser. The sequence of appearance of each individual line in the lasing process is found to be quite regular with positive *J*-shift. Rotational nonequilibrium behavior is exibited on all $v=1\sim 6$ levels. The cascade effect is markedly shown for transition $P_6(4) \rightarrow P_1(9)$ and $P_6(6) \rightarrow P_1(11)$.

These experiments are in good agreement with the predictions of our computer modeling.